Memory Usage Interfaces for Serverless Functions

Yonghao Zou (Student) David Hua (Student) George Candea
EPFL University of Waterloo EPFL
yonghao.zou@epfl.ch david.hua@uwaterloo.ca george.candea@epfl.ch
Faa$S platforms like AWS Lambda, Microsoft Azure func- 1 def matmul(n):
tions, and Google Cloud Functions have become popular for 2 A = np.random.rand(n, n)
building serverless applications. They offer a pay-as-you- 3 B = np.random.rand(n, n)
go model, automatic scaling, and high availability. However, 4 start = time()
they also suffer from various limitations. For example, they 0 ¢ =np. matm‘fl (A, B)
cannot accurately predict the memory usage of a function ? laFe:;y i Ilme Q ;Fft;ri .
because they lack knowledge of their memory requirements. o t;izl . ¢ c atency: AT % latency)

As a result, functions may consume more or less memory
than expected, which would cause memory wasting that in-
creases the cost to vendors or lead to performance issues
such as inefficient memory usage and even out-of-memory
errors, which would disappoint users.

On the other side, the cost of memory is a significant part
of the total cost of running serverless functions. For example,
AWS Lambda charges up to $0.06 per GB-hour of memory
used. Users still have to worry about the low-level details of
memory usage to calculate and optimize the cost of running
functions. They need to choose the right amount of memory
for a function to balance the cost and performance. However,
the memory usage of a function is not directly exposed to
users, and they have to estimate the memory usage of a
function based on profiling or testing.

For example, OFC [1], an opportunistic caching system for
Faa$ platforms, uses machine learning to predict the mem-
ory usage of functions to identify any overbooked memory
and use it to cache data and improve the performance of
functions. However, the machine learning model OFC uses
is based on the memory usage of functions collected from
profiling, which might not be accurate and may lead to per-
formance issues. It also needs to be updated frequently to
adapt to different and changing workloads.

To ease the pain of worrying about low-level memory
usage details, a cost calculator [2] was proposed to simulate
the execution in FaaS and calculate possible costs based on
the simulated memory usage. However, the cost calculator
is based on profiling and a community-contributed dataset,
which may not be accurate and up-to-date.

To solve these problems, inspired by performance inter-
faces [3, 4], we propose memory usage interfaces as a way to
describe the memory usage of functions. We are developing
a tool called MUX (Memory Usage eXtractor) that can auto-
matically extract memory usage interfaces from a serverless
function’s source code using symbolic execution. MUX out-
puts memory usage interfaces in both a human-readable and
machine-readable format, e.g., an annotation on a Python
function or a header file for a C function with additional key-
words.

For example, the above code snippet shows a Python func-
tion retrived from a FaaS benchmark that returns a matrix
calculated by two random matrices. The memory usage of
the matrices in matmul is a function of n: 3x sizeof{(float) x n?.
The A and B matrices can be freed after the function exits.
There are also two integers for calculating the lantency, each
one consuming 28 bytes in Python. So, the memory usage
interfaces of the function would be extracted as follows:

1 @mu.consumed(3 * sizeof(float) * n * n + 56)
2 @mu.freed(2 * sizeof(float) * n *x n + 56)
3 def matmul(n):

Memory usage interfaces can be used in two ways. First,
they can be used by the FaaS platform to predict the mem-
ory usage of a function and enforce proper memory limits,
which can prevent the function from consuming more mem-
ory than expected. We provide meta-programming APIs for
platform developers to query the memory usage, including
the consumed memory and the freed memory, of a function
for now. Second, they can be used by the users to estimate the
memory usage of a function and choose the right amount of
memory to allocate to balance cost and performance. We are
currently working on the implementation of MUX and evalu-
ating it on real-world serverless functions. We also plan to ap-
ply similar techniques to other domains, such as deep learn-
ing models, far memory systems, and distributed systems.

References

[1] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam,
R. Lachaize, J. Hwang, T. Wood, D. Hagimont, N. De Palma, B. Batchakui,
and A. Tchana, “OFC: an opportunistic caching system for Faa$ plat-
forms,” in Proceedings of the 2021 European Conference on Computer Sys-
tems (EuroSys), 2021.

J. Spillner, “Resource Management for Cloud Functions with Memory

Tracing, Profiling and Autotuning,” in Proceedings of the 2020 Interna-

tional Workshop on Serverless Computing, 2021.

R. Iyer, K. Argyraki, and G. Candea, “Performance Interfaces for Net-

work Functions,” in Proceedings of the 2022 USENIX Symposium on Net-

worked Systems Design and Implementation (OSDI), 2022.

[4] J. Ma, R. Iyer, S. Kashani, M. Emami, T. Bourgeat, and G. Candea, “Per-
formance interfaces for hardware accelerators,” in Proceedings of the
2024 USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2024.

[2

—
w

Memory-Usage Interfaces and Use Cases

spFL @ O © <«

Yonghao Zou David Hua George Candea DS ab

— *How much memory does

/ .
There is no formal syntax for expressing memory usage _ third-party code consume?
. Code *Does my code work properly with them?
- Developers must implement and check memory usage carefully :
. . *Can | have a better scheduling?
- Third-party vendors cannot write formal memory usage documents
- Systems cannot predict memory usage of programs before they run T Tk
libs / jobs >
There are interfaces describing how to call the function properly, lik Use cases
Ithe declaration yvlth the function’s parameters. Can we have X7 v Codm e
memory-usage interfaces? Code T IEREE
Functional interface Memory-usage interface </></></> interfaces
void *malloc(size); [alloc size] Serverless Functions
void *malloc(size); scheduling
void free(void *ptr); [free resource_of(ptr)]
void free(void *ptr); Extended C/Python
, CPU Mem front-end compiler
int large_mem_func(n) {
size = sizeof(..) * n; [alloc sizeof(..) * n] @
b = malloc(size, ..); ... int large_mem_func(n);

def matmul (n): @consumed(3*sizeof(..)*n*n) DL/LLM) LLVM EXGCUtable
A = np.random.rand(n, n) @freed(2*sizeof(..)*n*n) memory allocation byte-code interfaces
B = np.random.rand (n, n) def matmul(n);
C = np. matmul (A, B) Falloc n]
int alloc_page(n);

With the memory usage interface Verifying...

- Developers have a clear picture of memory usage for their code Error: usage n 1s

. . not equal ton + 1
- Third-party vendors can write formal memory usage documents
- System designers can utilize useful information to enrich system functionalities Verification

Want to work on something related? Talk to us!

